
Boosting the Scalability of Botnet Detection Using
Adaptive Traffic Sampling

Junjie Zhang†, Xiapu Luo∗, Roberto Perdisci‡, Guofei Gu∐, Wenke Lee† and Nick Feamster†
†Georgia Institute of Technology, ‡University of Georgia

∗Hong Kong Polytechnic University, ∐Texas A&M University
{jjzhang,wenke, feamster}@cc.gatech.edu, perdisci@cs.uga.edu

csxluo@comp.polyu.edu.hk, guofei@cse.tamu.edu

ABSTRACT
Botnets pose a serious threat to the health of the Internet.
Most current network-based botnet detection systems re-
quire deep packet inspection (DPI) to detect bots. Because
DPI is a computational costly process, such detection sys-
tems cannot handle large volumes of traffic typical of large
enterprise and ISP networks. In this paper we propose a sys-
tem that aims to efficiently and effectively identify a small
number of suspicious hosts that are likely bots. Their traffic
can then be forwarded to DPI-based botnet detection sys-
tems for fine-grained inspection and accurate botnet detec-
tion. By using a novel adaptive packet sampling algorithm
and a scalable spatial-temporal flow correlation approach,
our system is able to substantially reduce the volume of net-
work traffic that goes through DPI, thereby boosting the
scalability of existing botnet detection systems. We imple-
mented a proof-of-concept version of our system, and eval-
uated it using real-world legitimate and botnet-related net-
work traces. Our experimental results are very promising
and suggest that our approach can enable the deployment
of botnet-detection systems in large, high-speed networks.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Network]: Security
and Protection

General Terms
Security, Algorithms

Keywords
Botnet, Adaptive Sampling, Intrusion Detection, Network
Security

1. INTRODUCTION
Botnets are one of the most serious threats to Internet se-

curity. A botnet is a collection of compromised hosts (a.k.a.,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’11, March 22–24, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0564-8/11/03 ...$10.00.

bots) that are remotely controlled by an attacker (a.k.a.,
botmaster). Botnets can be instructed to commit various
malicious activities, such as launching distributed denial-
of-service (DDoS) attacks, sending spam, performing click
fraud, or stealing private information. To effectively control
a botnet, the botmaster establishes a command and control

(C&C) channel with the bots, through which the malicious
activities can be coordinated.

A number of approaches for network-based botnet detec-
tion have been recently proposed [4, 8, 6, 5, 12, 14, 23,
17]. Almost all of these systems apply fine-grained analysis
(e.g., deep packet inspection (DPI)) in order to detect bot-
compromised machines. For example, BotHunter [6] uses a
payload-based anomaly detector and a signature-based de-
tection engine. BotSniffer [5] and Rishi [8] need to parse the
content of IRC communications. TAMD [23] inspects packet
payloads to compute content similarity scores. BotMiner [7]
requires DPI to perform activity-plane (A-Plane) monitor-
ing, such as binary downloading and remote exploit detec-
tion. Although BotMiner’s communication-plane (C-Plane)
analysis does not require DPI, it suffers from scalability is-
sues that prevents its deployment in high-speed networks
(Section 6.3). While these systems have shown promis-
ing results, because DPI is computationally expensive, they
cannot be directly deployed in high-speed networks without
special (usually very expensive) hardware support. Further-
more, even when special hardware support is available, most
of the proposed techniques may still not be able to keep up
with the traffic, due to the relatively high computational
cost of their traffic analysis algorithms. Load-balancing (i.e.,
distributing traffic and computation to multiple processing
units) may represent a possible solution. However, a de-
ployment of these systems in load-balancing requires special
design and significant changes to the existing detection al-
gorithms.

In this paper, we propose a new packet sampling and scal-
able spatial-temporal flow correlation approach that aims to
efficiently and effectively identify a small number of suspi-
cious hosts that are likely bots. Their traffic can be for-
warded to fine-grained botnet detectors for further analysis.
This allows us to significantly reduce the amount of traffic
on which fine-grained analysis such as DPI is applied. Thus,
we boost the scalability of botnet detection for high-speed
and high-volume networks.

Network flow analysis typically requires far fewer resources
than DPI. However, collecting precise network flow informa-
tion in high-speed networks is challenging, because we may
not be able to afford to process every packet in the network.

In order to solve this problem, packet sampling techniques
are commonly employed to reduce the number of packets to
be processed. For example, uniform sampling and its vari-
ant periodic sampling are among the most popular packet
sampling techniques, and they allow a network operator to
reconstruct approximate network flow information. How-
ever, their limitation is that they are able to reconstruct rel-
atively precise information about large flows (i.e., flows that
carry a high number of packets), such as media streaming
flows, but may poorly approximate or miss outright infor-
mation about small and medium flows. In order to address
this issue, some new sampling algorithms have been recently
proposed. For example, FlexSample [2] is a programmable
framework where a network operator can set conditions to
increase the sampling rates packets from specific traffic sub-
populations (e.g., packets in small and medium flows). Un-
fortunately, because different botnet implementations may
introduce strong diversity in the properties (e.g., flow size)
of their C&C communication flows, it is challenging to set
conditions that allow FlexSample to sample packets target-
ted for a wide range of botnet C&Cs. For example, flows of
HTTP-based C&Cs are usually small (i.e., short lived) while
those related to IRC-based C&Cs are intrinsically larger. In
order to address this problem, we introduce a new adaptive

sampling technique. Our sampling technique is botnet-aware

since it is driven by intrinsic characteristics of botnets such
as group similarity, where the group similarity reflects the
fact that bots belonging to the same botnet share similar
C&C communication patterns. We also propose a new scal-
able spatial-temporal correlation approach to identify hosts
that share persistently similar communications. That is, we
aim to identify hosts in a network that persistently share
similar communication patterns for a relatively long (not
necessarily continuous) period of time. Our spatial-temporal
flow correlation analysis is motivated by the following ob-
servation. Because of their (illegal) economy-driven nature,
botnets are used by the botmasters for as long as possible to
maximize profits (e.g., several months, or until the botnet is
dismantled by law enforcement), so their C&C communica-
tions will be active for a relatively long period of time.

This paper makes the following contributions:

1. We propose a network traffic analysis approach for bot-
net detection in high-speed and high-volume networks.
The objective of our analysis is to efficiently and ef-
fectively narrow down suspicious hosts that are likely
bots. The network traffic generated by these suspicious
hosts can then be forwarded to fine-grained botnet de-
tectors for further analysis.

2. We introduce an adaptive sampling technique based
on group similarity, an intrinsic characteristic of bot-
nets, to sample packets that are likely related to C&C
communications with high probability.

3. We propose a new scalable spatial-temporal correla-
tion analysis to identify hosts in a network that share
persistently similar communication patterns, which is
one of the main characteristics of botnets.

4. We implemented a proof-of-concept version of our sys-
tem, and evaluated it using real-world legitimate and
botnet-related network traces. Our experimental re-
sults show that the proposed approach is scalable and
can effectively detect bots with few false positives,

which can be further reduced by fine-grained botnet
detection systems.

2. RELATED WORK
Researchers have proposed many approaches to detect

botnets. Some of the approaches [14, 17, 12, 8, 4] are de-
signed for detecting botnets with IRC-based C&Cs. Re-
cently, researchers proposed an approach to differentiate P2P
bots from P2P file sharing applications [18]. These ap-
proaches detect botnets with either IRC- or P2P-based C&Cs,
while our system can detect both. Some other detection
approaches are driven by specific attack information (i.e.,
spam). Ramachandran et al. [15] used DNSBL to iden-
tify bots for spamming, while Zhao et al. used Hotmail
logs in BotGraph [22]. Hu et al. [20] proposed RB-Seeker
to detect redirection botnets based on spam and network
flow information. Compared to these approaches, our sys-
tem mainly use packet header and network flow information,
which indicates a wider deployment. Some detection algo-
rithms uses correlation approaches. BotHunter [6] associates
IDS events to a pre-defined bot infection dialog model for
detection. BotSniffer [5] leverages the homogeneity of mes-
sages and activities to identify botnet C&Cs. Yen et al. [23]
proposed TAMD to detect bots by aggregating traffic which
shares the same external destination, similar payloads and
OS platforms. BotMiner [7] is a protocol- and structure-
independent botnet detection system using clustering tech-
niques. These systems depend on DPI-based components,
which limit their usage in high-speed networks. In our sys-
tem, we design botnet-aware packet sampling algorithm and
scalable spatial-temporal flow correlation approach for effi-
cient and effective botnet detection, which aims at the de-
ployment in high-speed networks.

Various sampling algorithms have been proposed to re-
duce the amount of data the network devices have to pro-
cess in high speed networks and infer the traffic statistics
based on the sampled packets. Most of them focus on sam-
pling large flows and improving their estimation accuracy
[21]. Recently researchers proposed approaches to focus on
sampling packets in small flows. Kumar et al. [1] and Hu
et al. [9] proposed algorithms to sample packets in small
flows. However, their overall sampling rate depends on the
Zipfian nature [19] of Internet and thus they cannot achieve
a pre-defined target sampling rate. Ramachandran et al.
[2] designed FlexSample, which can sample packets based
on pre-defined conditions. FlexSample can be configured
to capture packets in small/medium flows while keeping a
target sampling rate. However, characteristics of network
flows for botnet C&Cs exhibit great diversity among differ-
ent botnets and thus it is very challenging to propose good
conditions to describe all the flows of botnet C&Cs. There-
fore, these existing sampling algorithms maybe ineffective to
sample packets for botnet C&Cs. In contrast to the above
sampling algorithms, our algorithm is driven by the intrin-
sic characteristics of botnet C&Cs, and thus our sampling
algorithm captures more botnet packets related flows given
a certain sampling rate.

3. SYSTEM OVERVIEW
As shown in Figure 1, our botnet detection framework has

three components: Flow-Capture, Flow-Correlation, and
Fine-Grained Detector.

Traffic Filter

Packet-

Sampling

Flow-

Assembler

Flow-

Aggregation

Cross-Epoch

Correlation

Sampled Packets

Flow-Capture

Flow-Correlation

High-Speed Network

Watch List

Detection of

Similar

Malicious

Activities

Per_Exp

SR_Target

Correlation

IRC

Message

Correlation

Bots

Suspicious IPs

Correlated

pair of IPs

Fine-Grained

Detector

Figure 1: Architectural Overview

SrcIP CntDstIP

...

...

SrcIP CntDstIP

...

...

TCP

UDP

Counting Sketch

Set of

IPs
Cnt

Sampling

Probability

Set 1 C1S1

Set 2 C2S2

Priority

1

2

Set 3 C3S33

Syn IPs Detector

Sampling

Probability

Calculation

Sampling Sketch

Internal To External

Internal To External

External To Internal

Packet

<Packet, Sampling_Prob>

to Flow-Assembler

SYN

...

...

SYN-ACK

...

...

Target Sampling Rate

...

...

Figure 2: Packet Sampling Architecture

The Flow-Capture module aims to monitor the traffic at
the edge of high-speed networks to gather network flow infor-
mation, based on the sampled packets. The Flow-Capture
module is divided in two components: Packet-Sampling
and Flow-Assembler. Packet-Sampling is a botnet-aware
sampling algorithm. Given an overall target sampling proba-
bility (SRTarget), it samples packets likely related to botnet
C&C communications and delivers them to Flow-Assembler,
along with their corresponding instant sampling probabil-
ities (Section 4). The Flow-Assembler reconstructs flow
information, and assembles the sampled packets into raw
flows (defined in Section 4.2).

The Flow-Correlation module groups flows output by Flow-
Assembler into C-flows (defined in Section 5.1). A C-flow is
an abstraction introduced in BotMiner [7] to represent the
C&C communication patterns of potential bots. Each C-
flow represents a view of the communication patterns from
a monitored host to a remote service over a certain epoch
(e.g, 12 hours). Flow-Correlation applies a scalable clus-
tering algorithm over the C-flows to identify hosts that ex-
hibit similar communication patterns towards machines out-
side the monitored network. This step is similar to the C-
Plane analysis performed by BotMiner [7], but there are
two fundamental differences. First, we use a significantly
more efficient flow clustering process (see Section 5.2), com-
pared to BotMiner, which can handle large traffic volumes
typical of high-speed networks. Second, unlike BotMiner,
our Flow-Correlation module performs cross-epoch correla-
tion to identify hosts that show persistently similar com-
munication pattens, a telltale sign of botnets. Any pair of
hosts that exhibit persistently similar communication pat-
terns will then be labeled as suspicious hosts (potential bots)
and delivered to the Fine-Grained Detector for further in-
depth analysis. The Fine-Grained Detector can then focus
on monitoring the packets related to only the suspicious IPs
provided by our Flow-Correlation module, thus reducing the
overall cost of the botnet detection process.

The design and implementation of the Flow-Capture and
Flow-Correlation modules and the detection framework are
the main contributions of this work. Existing DPI-based
botnet detectors can be plugged within our framework with
little or no modification to constitute the Fine-Grained De-
tector module. We developed a Fine-Grained Detector de-
rived from BotMiner [7] and BotSniffer [5], and we plugged
it into our botnet detection framework. In particular, we
used two components: i) an implementation of the malicious

activities detector derived from BotMiner’s A-Plane moni-
tor, which can identify groups of similar malicious activities
based on the attack features (e.g., the scanned port, the ex-
ploits or binary content), and ii) BotSniffer’s IRC-based bot-
net detection module. Similar to the Cross-Plane correlation
in BotMiner, the correlation component correlates commu-
nication patterns and activity patterns to detect bots. Any
pair of IPs that share persistently similar communication
patterns (generated by Flow-Correlation) and similar mali-
cious activities (generated by the malicious activities detec-
tor) are labeled as bots by the correlation component. And
any host identified by the BotSniffer’s IRC-based botnet de-
tection module will be labeled as bot.

4. FLOW CAPTURE
The Flow-Capture performs packet sampling and reassem-

bles raw flows using a novel botnet-aware adaptive sampling
algorithm, which we call B-Sampling. Our B-Sampling al-
gorithm leverages the intrinsic characteristic of bots, namely
group similarity, to guide the sampling procedure. Given
a pre-defined target sampling rate, B-Sampling adaptively
tunes the instant sampling probabilities for different cate-
gories of IPs. For example, priority will be given to packets
related to IPs that share similar communication patterns,
while keeping the overall sampling rate close to the overall
target sampling rate SRTarget. The target sampling rate
is usually suggested by the process capacity of the monitor
device and the traffic speed of the monitored network. For
example, the monitor device with capacity of Capdevicebps
and the network with the speed of Capnetworkbps indicate
SRTarget = Capdevice

Capnetwork
.

4.1 Packet Sampling
As described in Figure 2, Packet-Sampling has four

components: Counting-Sketch, Sampling-Sketch, Syn-
chronized IPs Detector (SID), and Priority-based Sam-
pling Probability Calculation (PSPC). Counting-Sketch
tracks the number of packets sent from a SrcIP to a DstIP.
After each time interval of T , Packet-Sampling transfers the
Counting-Sketch to the SID, and then resets the Counting-
Sketch to 0 for next interval. The end of each time interval
also triggers the SID and PSPC to identify IP addresses with
synchronized behaviors and recalculate the instant sampling
probability for each category of IPs. Sampling-Sketch gets
the instant sampling probability for a packet and decides
whether this packet is going to be sampled.

4.1.1 Counting/Sampling Sketch
The Counting-Sketch is a table indexed by

Hash(SrcIP ||DstIP) for TCP and UDP packets, where
each entry in the table is defined as a track-flow. Each en-
try contains a pair of IPs (SrcIP and DstIP) and a counter
cnt, which represents the number of packets for this pair
of IPs. For TCP packets, the entry keeps SYN/SYNACK

flag. On arrival of a packet, the SrcIP and DstIP will be
recorded and the counter in the corresponding entry will
be increased by 1. The Counting-Sketch only handles the
packets from internal networks to external networks. Such
design can simplify the system implementation by just
monitoring the separated physical line for outgoing traffic.
Moreover, it reduces the time and memory consumption to
access the table. Counting-Sketch is reset to be 0 after the
time interval T (currently 15 minutes).

Each entry in Sampling-Sketch records a category/set of
IPs, a counter of packets related to these IPs, a sampling
probability and a priority. On arrival of a packet, Sampling-
Sketch checks the category of this packet based on its SrcIP
and DstIP. It then finds the instant sampling probability
(pi) for the corresponding category and samples this packet
with probability pi. The sampled packets, together with
their sampling probabilities, are sent to Flow-Assembler.

4.1.2 Synchronized IPs Detector
The SID identifies two kinds of hosts with synchronized

behaviors: i) syn-servers: the hosts in external networks
whose clients have similar network behaviors; ii) syn-clients:
the hosts in internal networks that share similar network be-
haviors to multiple destination hosts.

The detection of syn-servers is motivated by the network
behavior of C&C servers for centralized-based botnets, where
their clients (bots) are synchronized and thus share similar
network behaviors. For the legitimate servers, especially the
popular ones, their clients’ behaviors usually diverse from
each other due to various usage patterns of different users.
The detection of syn-clients is motivated by the network
behaviors of P2P-based C&Cs. P2P-based bots usually ac-
tively query their peers to maintain the overlay P2P network
for botnet C&Cs. Such behaviors will cause many similar
connections to multiple peer bots.

To detect syn-servers and syn-clients, we introduce“homo-
server” and “similar-client”.

1. Homo-server: We aggregate entries in Counting-Sketch
based on each DstIP. For each DstIP that has at least
two SrcIPs, we calculate the variance of the track-flow
sizes. We sort the variances and get the medium value
vmedium. For one DstIP, if its variance vi < vmedium,
we mark it as a homo-server. Otherwise, we take the
server as non-homo-server if it has at least two SrcIPs.

2. Similar-clients: We keep an array of bins (denoted as
B in Algorithm 1) and a pre-defined size R (currently
R = 10). Each bin bi is represented by its center that
is the average size of track-flows in this bin. For a flow
with size L, if |L−bi.center| ≤ R, we insert this track-
flow into bi and then update the bi.center. Otherwise,
we build a new bin and insert this flow into it. In each
bin, if we find a pair of SrcIPs and each of them has
more than C (currently C = 10) flows (e.g., connecting
to C different DstIPs), we take this pair of SrcIPs as
similar-clients.

On identifying the syn-clients, we currently discard the
TCP and UDP track-flows with size smaller than 10 to avoid
potential false positives generated by popular network ser-
vices like DNS or by the scanning-like behaviors. On identi-
fying the homo-servers, we ignore the TCP track-flows with
size of 1 or with only SY NACK flag. A TCP track-flow
with size of 1 indicates an unsuccessful connection. The
flag of SYNACK indicates a TCP connection initiated from
external networks, which is unlikely a connection for bot-
net C&Cs. Bots usually initiate connections to external
C&C servers for two reasons. First, the widely deployed
firewall/NAT devices block the connections initiated from
external networks. For example, researchers have shown
that more than 40% storm bots are behind a firewall or
NAT [11]. Second, the dynamic IPs make it very hard for
C&C servers to initiate connections to bots with dynamical
IPs accurately.

For each time interval T , we identify the homo-servers
and similar-clients. We accumulate evidence over multi-
ple intervals to decide whether a host is syn-server or syn-
client. We keep each syn-server and syn-client in the Sam-
pling Sketch for Trec (currently Trec = E/2, where E is one
epoch of 12 hours) from its last update. The algorithm is
described in Algorithm 1. THsyn−server/client is the thresh-
old of the score to identify syn-server/client. THdown is the
lower bound of the score. stepup/down is the step to in-
crease/decrease the score. We set THsyn−server/client = 4,
THdown = −10, stepup = 1, and stepdown = 0.2. Record
represents one data structure for IP and time stamp. Arr
is an array of scores indexed by the hosts and tcur is the
time stamp derived from current packet. If one record in
Arr is not updated from its last update for TArr (currently
TArr = E/2), we can eliminate it from Arr.

4.1.3 Sampling Probability Calculation
We dynamically calculate the sampling probability for

each category of IPs to fulfill two targets: i) to get as many
packets as possible that are related to syn-clients or syn-
servers; ii) to keep the actual sampling rate close to the
target sampling rate.

To keep the actual sampling rate close to the pre-defined
sampling rate, a scheme for allocating instant sampling prob-
abilities for different categories has been proposed by Ra-
machandran et al. [2]. However, this scheme requires pre-
configured budgets for different categories. Inappropriate al-
located budgets may affect the packet sampling process. For
example, the inadequate budget for synchronized IPs will
cause the lost of packets related to botnet, while the over-
allocated budget for synchronized IPs would be a waste of
the resources. To fully utilize the resources to capture pack-
ets, we design a sampling algorithm named Priority-based
Sampling Probability Calculation algorithm. The prin-
ciple for this algorithm is as follows: under a pre-defined
sampling rate, we use the available resources (budget) to
capture as many packets in the first priority category as
possible. The remaining available resource will be used to
capture as many packets as possible in the next level priority
category. Such process will continue until there is no fur-
ther category or no available resource. Algorithm 2 shows
this approach. Pt is the pre-defined target sampling rate.
{f1, f2, . . . , fn} is the fraction of packets in each category
where priority1 > priority2 · · · > priorityn. {p1, p2, . . . , pn}

Algorithm 1: Identify Synchronized Hosts

Input: Counting Sketch, Setd, tcur

Output: Setd: Records for syn-clients/servers.

begin
foreach Record R ∈ Setd do

if tcur − R.timestamp ≥ Trec then
Remove R from Setd;

foreach DstIP dhi in the Counting Sketch do
if dhi is homo-server then

Arr.get(dhi).score+ = stepup ;
if Arr.get(dhi).score ≥ THsyn−server then

setd.add(dhi, tcur);
Arr.get(dhi).score = THsyn−server;

if dhi is non-homo-server then
Arr.get(dhi).score− = stepdown ;
if Arr.get(dhi).score ≤ THdown then

Arr.get(dhi).score = THdown;

foreach SrcIP shi in the Counting Sketch do
if shi is similar-client then

Arr.get(shi).score+ = stepup ;
if Arr.get(shi).score ≥ THsyn−client then

setd.add(shi, tcur);
Arr.get(shi).score = THsyn−client;

else
Arr.get(shi).score− = stepdown ;
if Arr.get(shi).score ≤ THdown then

Arr.get(shi).score = THdown;

return Setd;

end

is a set of instant sampling rates for different priorities and
budget is for the available budget.

The following equation illustrates how the budget alloca-
tion helps the sampling component to keep a target sampling
rate. Suppose there are a total of K packets and the target
sampling rate is Pt. Given n categories and suppose each
category has fi fraction of the total packets and we give bud-
get bi to this category, we can calculate the sampling prob-
ability for category i as pi = Pt

bi
fi

. In this case, the number

of sampled packets Q and overall sampling rate would be
Q =

Pn
i=1

Kfipi = K
Pn

i=1
fi(Pt

bi
fi

) = KPt

Pn
i=1

bi. Ac-

cording to this equation, as long as
Pn

i=1
bi = 1, the over-

all sampling rate Q
K

would be Pt, the target sampling rate.
Since fi cannot be obtained precisely in advance, we dy-
namically estimate fi using WMA (weighted moving aver-
age) based on the observed value for it in the previous and
current intervals, which is fi = w1f

prev
i + w2f

curr
i where

w1 = 0.2 and w2 = 0.8 in our current design. The system
can dynamically assign priority1 or priority2 to syn-servers
or syn-clients. The fewer the packets related to one of these
two categories, the higher priority it has. The intuition be-
hind such design is to use enough resource to build the ac-
curate flows for the category that requires least resource.
In practice, operators can also fix the priority or introduce
more categories/priorities based on known knowledge (e.g.,
a category for the packets that are sent to confirmed bot
peers). The packets related to the rest of IPs are labeled as

the lowest priority (priority3).

4.2 Flow Assembler
The Flow-Assembler assembles sampled packets to gen-

erate raw flows, where each raw flow is identified by 5-
tuple key (SrcIP, SrcPort, DstIP, DstPort, Proto). For TCP
flow, the first two handshake packets (SYN and SYNACK)
can be used to identify the flow direction. However, since
packet sampling may result in the loss of TCP handshake
packets, we use following approaches to identify TCP flow
direction. First, if one of these two handshake packets is
sampled, we can easily identify the flow direction. Second,
for a TCP flow without TCP handshake packets sampled,
we take this flow as it is initiated from internal networks
(e.g., its SrcIP is from internal network). These approaches
guarantee that every TCP flow from internal network will be
attributed to the correct direction. Flow-Assembler outputs
a flow if the flow is finished (e.g., the TCP FIN/RST flag is
observed) or it expires (e.g., no packet comes for this flow for
10 minutes). For one raw flow, we record information includ-
ing timeStart, timeEnd, sizeActual (# of packets observed),
byteActual (# of bytes observed) and sizeEst. sizeEst is the
estimated flow size based on the sampled packets and their
corresponding instant sampling probabilities. Suppose there
are n packets for one raw flow and each packet has bi bytes
and sampling probability of pi, we compute the metrics for
this raw flow as follows: sizeEst =

Pn
i=1

1

pi
, sizeActual = n,

byteActual =
Pn

i=1
bi.

Algorithm 2: Priority-based Sampling Algorithm

Input: Pt, f1, f2, . . . , fn

Output: p1, p2, . . . , pn

begin
budget = 1;
foreach i = 1 . . . n do

if fi == 0 or budget ≤ 0 then
pi = 0;
continue;

else
pi = budget ∗ Pt

fi
;

pi = pi > 1?1 : pi;
budget− = pi ∗

fi
Pt

;

return {p1, p2, . . . , pn};

end

5. FLOW CORRELATION
The goal of Flow-Correlation is to identify hosts with

persistently similar communication patterns. By evaluat-
ing the capacity of the fine-grained detectors and the mon-
itored network, operators can estimate the percentage of
hosts PerExp (as described in Figure 1) that fine-grained
detectors can afford to monitor. For example, if we assume
that the traffic is evenly distributed over the hosts in the
monitored network, the capacity of a fine-grained detector
(Capdetectorbps) and the network speed (Capnetworkbps) in-

dicate a PerExp = Capdetector
Capnetwork

. The Flow-Correlation com-

ponent identifies groups of hosts (up to PerExp) that share
most similar communication patterns and show persistence.

A, B, C

A, B

A, B, D

cluster: gi

group: c1

group: c2

group: c3

A, B

cluster: gi

c1

c3

c2

Figure 3: An Example of Cross-Epoch-Correlation

5.1 Flow Aggregation
We use C-flow to represent the communication pattern

from a host to a remote host and port. We define a C-flow as
a set of raw flows sharing same tuple of (SrcIP, DstIP, Dst-
Port, Proto) in a certain epoch E (currently E = 12hours),
denoted as c = {f1, . . . , fn}. To get C-flows, we filter out the
raw flows that satisfy either of two conditions: i) The raw
flow is initiated from external network to internal network,
where the reason is discussed in Section 4.1. ii) The raw flow
has traffic in only one direction, which indicates an unsuc-
cessful connection. We represent a C-flow (c = {f1, . . . , fn})
using the following 10 features.

1. The means and variances of fph (the number of flows
per hour), ppf (the number of packets per flow), bpp
(the number of bytes per packet), pps (the number of
packets per second), which have similar definition in
BotMiner [7]. We use sizeEst to compute ppf and

pps, while byteActual
sizeActual

is used for bpp.

2. fphmax: the maximum number of flows per hour.

3. timem: the median time interval of two consecutive
flows.

5.2 Cross-Epoch Correlation
Given PerExp, cross-epoch correlation identifies pairs of

IPs where each pair shares persistently similar communica-
tion patterns for at least M epochs out of totally N epochs
(M ≤ N).

We get a set (G) of C-flows over multiple epochs, and
each C-flow has an epoch-tag. After clustering C-flows,
we get a set of clusters {g1, g2, . . . , gn} where each clus-
ter gi represents a set of similar communication patterns
(G = g1 ∪ g2 ∪ · · · ∪ gn). For C-flows in one cluster gi,
we further aggregate them into different groups (denoted as
{c1

i , c2

i . . . cN
i } and gi = c1

i ∪ c2

i · · · ∪ cN
i) according to their

epoch-tags. For example, cj
i represents the C-flows that are

similar in jth epoch (spatial-similarity). For each cluster
gi, if a pair of SrcIPs share at least M common groups, it
indicates that they share persistently similar communica-
tion patterns over at least M epochs. Therefore, we label
this pair of SrcIPs as suspicious. We denote the percent-
age of all the detected suspicious IPs over all the SrcIPs
as Per. Figure 3 presents an example of cross-epoch cor-
relation. A/B/C/D is the C-flow associated with the host
hA/hB/hC/hD, and the remote host and port of A/B/C/D
are not necessarily to be the same over multiple epochs (e.g.,
A represents < hA, hremote, portremote >). Some similar C-
flows associated with hA/hB/hC/hD are clustered together

Trace # of Pkts Dur Info
Mar25 205,079,914 12h header
Mar26 280,853,924 24h header
Mar27 318,796,703 24h header
Mar28 444,260,179 24h header
Mar31 102,487,409 1.5h full

Table 1: Background Traces
Trace Dur Bots
Bot-IRC-A 4days 3
Bot-IRC-B 4days 4
Bot-HTTP-A 4days 3
Bot-HTTP-B 4days 4
Bot-HTTP-C 4days 4
Bot-P2P-Storm 4days 2
Bot-P2P-Waledac 4days 3

Table 2: Botnet traces

in a cluster gi. By investigating the epoch-tag related to
each C-flow, we aggregate these C-flows to three groups
(c1/c2/c3), as described in the left part of Figure 3. The
right part of Figure 3 presents that hA and hB share 3 com-
mon groups, which indicates that they share similar com-
munication patterns for 3 epochs. If we set M ≤ 3, hA and
hB are labeled as suspicious.

To get clusters of C-flows that represent similar communi-
cation patterns, we use clustering algorithm. BotMiner uses
two-level clustering scheme (X-Means and Hierarchical) that
cannot scale well for large number of C-flows as shown in
Figure 7. To process C-flows in an efficient manner, we use
a scalable clustering algorithm Birch [24]. Given a certain
value of “diameter”, Birch can first efficiently discover clus-
ters of C-flows within such distance. Second, cross-epoch
correlation can detect suspicious IPs based on the clustering
results. We repeat these two steps by increasing the value
of “diameter”. This process terminates when the percentage
of suspicious IPs Per for the next step reaches at the ex-
pected percentage PerExp or the number of rounds reaches
at a pre-defined MaxRound (currently 50).

6. EVALUATION
We implemented a prototype system and evaluated it us-

ing traces of real-world network traffic and different bot-
nets. The results show that Flow-Capture can achieve a
significantly higher sampling rate for botnet-related packets
compared to the pre-defined sampling rate. We compared
B-Sampling to FlexSample, and the experimental results in-
dicate that B-Sampling outperforms FlexSample regarding
sampling rate for botnet packets and detection rate of Flow-
Correlation. The cross-epoch correlation can effectively and
efficiently identify bots given a small percentage of suspi-
cious hosts. The fine-grained detector can achieve high de-
tection rate and low false positive rate by only inspecting
packets related to a small percentage of suspicious hosts.

6.1 Experiment Setup and Data Collection
We mounted our monitors on a span port mirroring a

backbone router at the college network (200Mbps-300Mbps
at daytime) to collect data. The traffic covers various ap-
plications and we believe such kind of traffic provides good
traces to evaluate our system. The dataset contains TCP
and UDP headers for continuous 3.5 days and full pack-
ets for 1.5 hours in Table 1. We eliminated a B/16 subnet
for dynamic IPs allocated for wireless connections, which

are frequently changed and can not accurately represent the
same hosts for multiple epochs. We observed a total of 1460
different IP addresses in 3.5 days. We also collected 1.5 hour
traces with full payload.

We collected the traces of 7 different botnets including
IRC-, HTTP- and P2P-based botnets, as described in Ta-
ble 2. Bot-IRC-A and Bot-HTTP-A were collected by running
bot instances (“TR/Agent.1199508.A” and “Swizzor.gen.c”)
in multiple hosts in the honeypot. Bot-IRC-B and Bot-HTTP-

B/C were generated using Rubot [13], a botnet emulation
framework. In Bot-HTTP-B, bots periodically contacted the
C&C server every 10 minutes. And in Bot-HTTP-C, the bots
contacted the C&C server in a more stealthy way by adding
a random time interval between 0 to 10 minutes on each
time of visiting. Both of them conducted scanning attack
on receiving the “scan” command. Bots in Bot-IRC-A send
packets much more frequently to C&C server in the IRC
session, resulting in much larger C&C flows compared to
Bot-IRC-B. We collected traces of two P2P-based botnets,
Storm [7] and Waledac [10], by running binaries in the con-
trolled environment.

After aligning the timestamp of each packet in botnet
traces according to the time of the first packet in background
traces, we mixed 3.5 consecutive days of botnet traces into
the college traces by overlaying them to randomly picked
client IPs in college network. We took one epoch E as 12hr
so there are 7 epochs in total. The filter covers major lo-
cal DNS, email servers in the college, the IP ranges of the
popular service networks (e.g., MICROSOFT, GOOGLE,
YAHOO, SUN, etc.), popular content distribution networks
(e.g., AKAMAI) , whose IP ranges are unlikely to be used
for Botnet C&Cs, and IPs of top 10000 alexa domains (cor-
responding to 12230 IPs).

6.2 Evaluation of Sampling Algorithm
We evaluated B-Sampling algorithm using the mixed traces

with different target sampling rates (0.01, 0.025, 0.05, 0.075
and 0.1). We compared B-Sampling to FlexSample [2], a
state-of-the-art sampling algorithm that can be configured
with different “conditions” for different purposes. FlexSam-
ple used a specific condition (Figure 10 in FlexSample [2])
to capture botnet packets by allocating the majority of bud-
gets to packets related to “servers with high indegree of
small flows”. However, since the number of infected ma-
chines could be small in real-world, the “high fan-in” fea-
ture may not hold and thus will probably miss the botnet
packets. As illustrated in Table 8 in Appendix A, this con-
dition causes very low sampling rates on botnet packets in
our traces. Therefore, we modify the condition and only use
the condition related to flow size for FlexSample. We config-
ured FlexSample using a condition presented in Table 7 with
(size ≤ 20, budget = 0.95), which means that FlexSample
uses 95% resource to capture the packets in flows with sizes
smaller than 20.

Table 3 presents the overall sampling rates and sampling
rates for botnet-related packets on the mixed dataset, us-
ing both B-Sampling and FlexSample. The first column
(SRT) reports the pre-defined target sampling rates we ex-
perimented with. The second column (SRActual,B) and the
third column (SRActual,F lex) report the actual overall sam-
pling rates achieved by B-Sampling and FlexSample. The
results show that both B-Sampling and FlexSample keep the
actual sampling rate close to the target sampling rate. The

remaining columns report the sampling rates related to dif-
ferent types of botnet-related packets, where we “zoom” in
the sampled packets and evaluate the actual sampling rates
for packets of each botnet. For example, the 4th column
(SRIRC−A/B ,B) reports the actual sampling rate for pack-
ets in Bot-IRC-A and Bot-IRC-B using B-Sampling, whereas
the 5th column (SRIRC−A/B ,F lex) presents the sampling
rate using FlexSample. We can find that B-Sampling cap-
tures a higher percentage of botnet packets, compared to
FlexSample. For example, considering the second row (tar-
get sampling rate is 0.025), B-Sampling achieves a sam-
pling rate of 0.93 (SRIRC−A/B , B column) while FlexSam-
ple achieves that of 0.002 (SRIRC−A/B , F lex column) for
packets in Botnet-IRC-A, where the C&C flows are large
flows. The remaining columns report a comparison of B-
Sampling and FlexSampling on the sampling rates for other
botnets. As we can see, B-Sampling achieves higher sam-
pling rate for botnet-related packets, compared to FlexSam-
ple. It is possible to increase the flow size in the FlexSam-
ple condition or reduce the budget for small flows to make
FlexSample capture more packets in Botnet-IRC-A. How-
ever, it will cause FlexSample to decrease the sampling rates
for packets related to botnets whose C&Cs are small flows
such as Bot-HTTP- and Bot-P2P-. The reason is that the
feature of flow size and server indegree are not intrinsic for
botnets and different botnets can diverse greatly regarding
these features. B-Sampling gave higher sampling rate for
packets in Bot-IRC- and Bot-HTTP- than those in Bot-P2P-

, because that the number of packets related to syn-server is
much smaller than that related to syn-clients, and thus syn-
servers have higher priority as illustrated in Section 4.1.3.

We evaluated the parameters, C and stepup, in the B-
Sampling algorithm in Section 4.1. Given SRT = 0.05, we
report the experimental results in Table 9 in Appendix A.
The results demonstrate that the results of B-Sampling are
stable over these values.

6.3 Evaluation of Flow Correlation
We evaluated the cross-epoch correlation with B-Sampling

using the mixed traces for two properties, detection accuracy
and scalability. We set M = x

N
2

y (N = 7, M = 3), which
means that two hosts sharing similar communication pat-
terns for any 3 out of 7 epochs will be labeled as suspicious.

Given SRT and PerExp, each cell in Table 4 shows the
detection rate of bots(/23) and percentage of noises(/1460)
identified by Flow-Correlation using B-Sampling. The re-
sults show that Flow-Correlation can achieve high detection
rate with low PerExp. For example, with PerExp ≥ 5%,
for all the SRT evaluated, Flow-Correlation can success-
fully identify all the bots. While for the very low PerExp

(e.g., 2% and 3%), more than half of the bots were still
captured. We also compared the detection rate of Flow-
Correlation using B-Sampling to that of Flow-Correlation
using FlexSample (in Table 10). Figure 4 illustrates the av-
erage detection rates over different PerExp for each target
sampling rate, and Figure 5 and Figure 6 present the detec-
tion rates using B-Sampling and FlexSample with PerExp

of 0.01 and 0.05. The comparison results show that by using
B-Sampling, Flow-Correlation can achieve higher detection
rate.

Figure 7 presents the time consumption (in a 4G memory
and 2-core CPU computer) for cross-epoch correlation and
the C-Plane clustering of BotMiner as the number of C-flows

SRT SRActual SRIRC−A/B SRHT T P−A/B/C SRStorm SRWaledac

B- Flex B- Flex B- Flex B- Flex B- Flex
0.01 0.012 0.01 0.65/0.68 0.001/0.07 0.55/0.69/0.68 0.06/0.07/0.06 0.02 0.05 0.02 0.07
0.025 0.027 0.025 0.93/0.92 0.002/0.16 0.72/0.93/0.93 0.16/0.17/0.16 0.16 0.11 0.18 0.16
0.05 0.052 0.05 0.96/0.96 0.004/0.32 0.74/0.96/0.96 0.32/0.35/0.33 0.48 0.23 0.48 0.33
0.075 0.076 0.075 0.97/0.97 0.006/0.48 0.75/0.97/0.97 0.50/0.50/0.48 0.72 0.33 0.7 0.48
0.1 0.1 0.1 0.98/0.98 0.008/0.6 0.76/0.98/0.98 0.6/0.64/0.61 0.83 0.41 0.81 0.61

Table 3: Sampling Rate

0.01 0.025 0.05 0.075 0.1
Target Sampling Rates SRT

0.0

0.2

0.4

0.6

0.8

1.0

Av
g

De
te

ct
io

n
Ra

te
s o

f C
ro

ss
-E

po
ch

 C
or

0.92 0.93 0.95 0.95
0.91

0.43

0.72 0.73

0.80
0.86

B-Sampling

FlexSample

Figure 4: Average detection rate for cross-epoch

correlation, over different PerExp

0.01 0.025 0.05 0.075 0.1
Target Sampling Rates SRT

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n
Ra

te
s

of
 C

ro
ss

-E
po

ch
 C

or

0.48
0.52

0.48 0.48

0.39

0.22 0.22
0.17

0.30

0.22

B-Sampling

FlexSample

Figure 5: Detection rate for cross-

epoch correlation, PerExp = 0.01

0.01 0.025 0.05 0.075 0.1
Target Sampling Rates SRT

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
tio

n
R

at
es

 o
f C

ro
ss

-E
po

ch
 C

or

1.00 1.00 1.00 1.00 1.00

0.52

0.87 0.87 0.87

0.96

B-Sampling

FlexSample

Figure 6: Detection rate for cross-

epoch correlation, PerExp = 0.05

increases. We configured Birch to run MaxRound = 50
to simulate the process of identifying up to PerExp suspi-
cious hosts. The exponential time increment for C-Plane
clustering of BotMiner indicates its limited scalability. The
cross-epoch correlation shows linear pattern and its linear
regression model is t = 0.0035x.

0 200000 400000 600000 800000 1000000
Number of c-flows x

0

20000

40000

60000

80000

100000

120000

140000

160000

T
im

e
 C

o
n
su

m
e
d
 t

 (
in

 s
e
co

n
d
s)

t=0.0035x

Xmeans+Hier Clustering

Cross-Epoch Correlation

Figure 7: Scalability of Cross-Epoch Correlation

1 2 3 4 5 6 7
of epochs required (M)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Av
g

De

te
ct

ion
 R

at
e

fo
r d

iff
er

en
t S

R T

0.54

0.98
1.00

0.98
0.96

0.94

0.82

0.74

1.00 1.00 1.00
0.99

0.94

0.82

PerExp=0.05

PerExp=0.1

Figure 8: Avg detection rate (over SRT s) of Cross-

Epoch Correlation using B-Sampling

Figure 8 presents the mean and standard deviation for de-
tection rates by Flow-Correlation with B-Sampling for dif-
ferent M , given PerExp (5% or 10%) for all SRT . First,
the results demonstrate the effectiveness of cross-epoch cor-
relation. When no cross-epoch correlation is used (M = 1),
many legitimate IPs show stronger similarity than bots in a
single epoch. Therefore, given a certain PerExp, more than
50% bots are missed. While cross-epoch correlation can
effectively eliminate these legitimate IPs that show strong
similarity in one epoch but do not have persistently similar
patterns. For example, cross-epoch correlation with M = 2

can successfully detect most bots. Second, the results indi-
cate that cross-epoch correlation is not sensitive to the value
of M . For example, for M = 3/4/5, the cross-epoch corre-
lation achieves similar detection rate. Such observation also
indicates that N

2
is a good value for M .

6.4 Botnet Detection
Fine-grained botnet detector inspects all the packets re-

lated to suspicious IPs detected by Flow-Correlation. Using
1.5hr trace mixed with botnet traces, we evaluated the de-
tection rate and performance of the fine-grained detector.

By analyzing the similarity among IRC messages, “IRC
Message Correlation” component in our detector detected
bots in Bot-IRC-A/B. Other bots were detected by the “Cor-
relation” component. For example, Bots in Bot-HTTP-B/C

trigger alerts when they scan the local network. Bot-HTTP-

A bots trigger alerts when they make update requests. Storm
and Waledac trigger alerts when they discover peers. These
bots were detected by correlating such activities/alerts with
corresponding pairs of IPs from Flow-Correlation. Table 5
presents the detection rates and false positive rates for the
fine-grained detector for different SRT s and PerExps. The
corresponding cells in Table 11 in Appendix A present the
percentage of packets that our fine-grained detector needs
to inspect. For most combinations of SRT and PerExp,
our framework can reduce traffic volume by more than 90%
for fine-grained detector but still keep high detection rates
and low false positives. For example, for SRT = 0.01 and
PerExp = 0.05, the fine-grained detector can detect all bots
with false positive of 0, and it only needs to focus on 1.7%
percentage of packets.

With Flow-Corr (PerE = 5%, M = 3) direct
SRT 0.01 0.025 0.05 0.075 0.1 1

Per of Pkts 1.7% 2.9% 2.1% 3% 4.3% 2% 100%
Time 33s 39s 35s 40s 49s 33s 858s

Table 6: Performance of Fine-Grained Detector

Table 6 presents the performance comparison, including
the percentage of packets inspected and the processing time
of the fine-grained detector in two situations: i) the detec-
tor is directly applied, ii) the detector is applied with Flow-

SRT For each PerExp, TP(bots/23), FP(noises/1460)
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.01 48%, 0.1% 83%, 0.5% 96%, 1% 96%, 2% 100%, 3% 100%, 4% 100%, 5% 100%, 6% 100%, 6% 100%, 8%
0.025 52%, 0% 87%, 0.5% 100%, 1% 100%, 2% 100%, 3% 100%, 4% 100%, 5% 100%, 6% 100%, 7% 100%, 8%
0.05 48%, 0.1% 100%, 0.3% 100%, 1% 100%, 2% 100%, 3% 100%, 4% 100%, 5% 100%, 5% 100%, 7% 100%, 7%
0.075 48%, 0.2% 100%, 0.3% 100%, 1% 100%, 2% 100%, 3% 100%, 4% 100%, 5% 100%, 6% 100%, 7% 100%, 8%
0.1 39%, 0.3% 78%, 0.8% 100%, 1% 100%, 2% 100%, 3% 100%, 3% 100%, 5% 100%, 5% 100%, 7% 100%, 8%
1 30%, 0.5% 65%, 0.8% 96%, 1% 100%, 2% 100%, 3% 100%, 4% 100%, 5% 100%, 5% 100%, 7% 100%, 8%

Table 4: Detection Rates of Cross-Epoch Correlation using B-Sampling

SRT For each PerExp, TP(bots/23), FP(noises/1460)
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.01 48%, 0 83%, 0 96%, 0 96%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0
0.025 52%, 0 87%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0
0.05 48%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0
0.075 48%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0
0.1 39%, 0 78%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0
1 30%, 0 65%, 0 96%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0 100%, 0

Table 5: Detection Rates of Fine-Grained Detectors

Correlation and B-Sampling (PerExp = 0.05 and M = 3).
By using Flow-Correlation, fine-grained detector to reduce
95% time to process off-line traces, indicating a great work-
load reduction in real time.

7. DISCUSSION
To answer the question “how high speed networks our ap-

proach can handle?”, we consider the performance of two key
components, B-Sampling and cross-epoch correlation. B-
Sampling is intended to be implemented with hardware sup-
port, where we can design the Counting-Sketch and Sampling-
Sketch in fast memory (e.g., SRAM) while the SID and
PSPC in slow memory (e.g., DRAM). The system can pe-
riodically but parallel read the data from SRAM to DRAM
for identifying synchronized hosts and computing sampling
probabilities, and then write the sets of IPs to SRAM. And
for Counting-Sketch, recent study has shown the hardware
implementation of a specific hash function with a through-
put of over 10Gbps [3], indicating the potential performance
of 10Gbps of B-Sampling with hardware implementation.
Given an expected time consumption of 2hr for cross-epoch
correlation, the linear model t = 0.0035x (in seconds) im-
plies 2M C-flows. If we assume the number of C-flows is
proportional to the traffic volume (e.g., 200K C-flows in our
experiment is corresponding to 200Mbps), 2M C-flows corre-
spond to a network with speed of 2Gbps. Since 2Gbps is less
than the potential performance of 10Gbps of B-Sampling,
such results indicate that our approach can be used in 2Gbps
networks (e.g., campus backbone networks) and has the po-
tential to be deployed in faster network as the expected time
consumption of cross-epoch correlation increases.

Because of our assumptions on the persistent use of coor-
dinated C&Cs in a botnet, any evasion attempts that violate
our assumptions will likely succeed if the botmaster knows
our algorithms, similar to any evasion attacks against an
IDS. Bots may intentionally manipulate their communica-
tion patterns to decrease sampling probabilities or evade
cross-epoch correlation. For example, bots can randomize
communication patterns (e.g., number of packets per flow)
to evade the syn-client/server detection. One potential so-
lution is to dynamically tune the parameters used for iden-
tifying syn-servers and syn-clients for each round (e.g., ran-
domly select 1

4
, 3

4
quantiles or medium value of variances

for identifying syn-server, and choose R and C from a pre-
defined set of values/ranges for identifying syn-clients). An-
other solution is for B-Sampling to incorporate information
from other systems. For example, we can set a category of
IPs in rouge networks [16] or malicious fast-flux networks,
which are likely related to botnets, to sample more related
packets. For cross-epoch correlation, we can incorporate
more detection features (e.g., using packet payload infor-
mation for some tight clusters to do light-weight content
checking) to make the evasion more difficult. Due to the
nature of the arms race in existing intrusion detection and
evasion practice, we should always study better and more
robust techniques as a defender. Combining different com-
plementary detection techniques to make the evasion harder
is one possible future direction. We leave a deeper and more
extensive study to handle these evasion attempts as future
work.

8. CONCLUSION
Botnet detection in high-speed and high-volume networks

is a challenging problem. Given the severity of botnets and
the growing interest from ISPs to defend against botnets,
research on botnet detection in high-speed and high-volume
networks is important. In this paper, we have described
a solution to this problem, which includes a botnet-aware
adaptive packet sampling algorithm and a scalable spatial-
temporal flow correlation approach. The adaptive packet
sampling technique uses network characteristics of botnet
C&Cs to capture more packets related to bots and adap-
tively tune the sampling probabilities to keep a target sam-
pling rate. The flow correlation approach exploits the es-
sential properties of botnets and detects bots by identify-
ing hosts with persistently similar communication patterns.
Based on evaluation using real-world network traces shows
that our proposed solution yields good performance. The
sampling algorithm can capture more botnet packets in com-
parison to pre-defined sampling rate and outperforms the
state-of-the-art adaptive sampling algorithms. Based on the
sampled packets, the correlation algorithm can successfully
and scalably pinpoint various types of bots (including IRC-
based, HTTP-based, and P2P-based). This approach will
help the fine-grained botnet detectors to focus on inspect-
ing packets of a smaller amount of suspicious traffic, thus

allowing them to operating on increasingly more high-speed
networks.

Acknowledgments
We thank Anirudh Ramachandran for providing the code
for FlexSample and Chris Lee for the help in providing the
code for Rubot. We also wish to thank the anonymous re-
viewers for their insightful comments and feedback. This
material is based upon work supported in part by the Na-
tional Science Foundation under grants No. 0831300 and No.
CNS-0954096, the Department of Homeland Security under
contract No. FA8750-08-2-0141, and the Office of Naval Re-
search under grants No. N000140710907, No. N000140911042
and No. N000140910776. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the National Science Foundation, the Department of Home-
land Security, or the Office of Naval Research.

9. REFERENCES
[1] A. Kumar and J. Xu. Sketch guided sampling – using

on-line estimates of flow size for adaptive data
collection. In Proc. IEEE Infocom, 2006.

[2] A. Ramachandran, S. Seetharaman, and N. Feamster.
Fast monitoring of traffic subpopulations. In Proc.

ACM IMC, 2008.

[3] R. K. B. Yang and D.A.McGrew. Divide and
concatenate: An architectural level optimization
technique for universal hash functions. In Proc. of the

Design Automation Conference, 2004.

[4] J. R. Binkley and S. Singh. An algorithm for
anomaly-based botnet detection. In Proc. USENIX

SRUTI, 2006.

[5] G. Gu, J. Zhang, and W. Lee. Botsniffer: Detecting
botnet command and control channels in network
traffic. In Proc. NDSS, 2008.

[6] G. Gu, P. Porras, V. Yegneswaran, M. Fong, W. and
Lee. Bothunter: Detecting malware infection through
IDS-driven dialog correlation. In Proc. USENIX

Security, 2007.

[7] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer:
Clustering analysis of network traffic for protocol- and
structure-independent botnet detection. In Proc.

USENIX Security, 2008.

[8] J. Goebel and T. Holz. Rishi: identify bot
contaminated hosts by irc nickname evaluation. In
Proc. USENIX HotBots, 2007.

[9] C. Hu, S. Wang, J. Tian, B. Liu, Y. Cheng, and
Y. Chen. Accurate and efficient traffic monitoring
using adaptive non-linear sampling method. In Proc.

IEEE Infocom, 2008.

[10] Infosecurity. Storm deadnet reanimates as waledac
botnet. http://infosecurity.us/?p=6262, 2009.

[11] B. Kang, E. C. Tin, and C. P. Lee. Towards complete
node enumeration in a peer-to-peer botnet. In Proc.

ACM AISACCS, 2009.

[12] A. Karasaridis, B. Rexroad, and D. Hoeflin.
Wide-scale botnet detection and characterization. In
Proc. USENIX HotBots, 2007.

[13] C. P. Lee. FRAMEWORK FOR BOTNET

EMULATION AND ANALYSIS. PhD thesis, Georgia

Institute of Technology, Atlanta, GA, Nov. 2008.

[14] C. Livadas, R. Walsh, D. Lapsley, and W. T. Strayer.
Using machine learning techniques to identify botnet
traffic. In Proc. IEEE WoNS, 2006.

[15] A. Ramachandran, N. Feamster, and D. Dagon.
Revealing botnet membership using DNSBL
counter-intelligence. In Proc. USENIX SRUTI, 2006.

[16] B. Stone-Gross, A. Moser, C. Kruegel, E. Kirda, and
K. Almeroth. Fire: Finding rogue networks. In Proc.

ACSAC, 2009.

[17] W. T. Strayer, R. Walsh, C. Livadas, and D. Lapsley.
Detecting botnets with tight command and control. In
Proc. IEEE LCN, 2006.

[18] T.-F. Yen and M. K. Reiter. Are your hosts trading or
plotting? telling p2p file-sharing and bots apart. In
ICDCS, 2010.

[19] L. P. Wenjia Fang. Inter-as traffic patterns and their
implications. In IEEE Global Internet Symposium,
1999.

[20] X. Hu, M. Knysz and K. Shin. Rb-seeker:
Auto-detection of redirection botnets. In Proc. NDSS,
2009.

[21] Y. Zhang, S. Singh, S. Sen, N. Duffield and C. Lund.
Online identification of hierarchical heavy hitters:
Algorithms, evaluation, and applications. In Proc.

ACM IMC, 2004.

[22] Y. Zhao and Y. Xie and F. Yu and Q. Ke and Y. Yu.
Botgraph: Large scale spamming botnet detection. In
Proc. USENIX NSDI, 2009.

[23] T.-F. Yen and M. K. Reiter. Traffic aggregation for
malware detection. In Proc. DIMVA, 2008.

[24] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An
efficient data clustering method for very large
databases. In Proc. ACM SIGMOD. ACM Press, 1996.

APPENDIX

A. TABLES

vars = 1
conditions = 1
var 1 := srcip.srcport.dstip.dstport.prot
counter var 1 := 8, 1000000, 0.01, 30
var 1 in (0, 20]: 0.95

Table 7: Condition for FlexSample

SRT SRI−A/B SRH−A/B/C SRStorm SRWaledac

0.025 0.003/0.01 0.013/0.011/0.01 0.006 0.008
0.05 0.006/0.018 0.023/0.019/0.017 0.012 0.015

Table 8: Sampling Rate using condition in Figure 10 in FlexSample [2]

C, stepup SRActual SRI−A/B SRH−A/B/C SRStorm SRWaledac

10, 0.8 0.051 0.97/0.96 0.71/0.96/0.96 0.50 0.49
10, 0.5 0.051 0.96/0.95 0.61/0.96/0.95 0.51 0.51
10, 1.2 0.052 0.96/0.96 0.77/0.96/0.96 0.46 0.46
5, 1 0.052 0.96/0.96 0.74/0.96/0.96 0.46 0.46
15, 1 0.052 0.96/0.96 0.74/0.96/0.96 0.48 0.48

Table 9: Sampling Rate using Different Parameters

SRT For each PerExp, TP(bots/23), FP(noises/1460)
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.01 22%, 0.6% 30%, 2% 30%, 2% 39%, 3% 52%, 4% 52%, 5% 52%, 6% 52%, 7% 52%, 8% 52%, 8%
0.025 22%, 0.6% 39%, 1% 52%, 2% 87%, 3% 87%, 3% 87%, 5% 87%, 6% 87%, 7% 87%, 7% 87%, 8%
0.05 17%, 0.6% 43%, 1% 70%, 2% 87%, 3% 87%, 4% 87%, 4% 87%, 5% 87%, 7% 87%, 7% 87%, 7%
0.075 30%, 0.4% 57%, 1% 83%, 2% 87%, 3% 87%, 3% 87%, 4% 87%, 6% 96%, 6% 96%, 7% 96%, 8%
0.1 22%, 0.3% 65%, 1% 83%, 2% 96%, 2% 96%, 3% 100%, 4% 100%, 5% 100%, 6% 100%, 7% 100%, 8%

Table 10: Detection Rates of Cross-Epoch Correlation using FlexSample

SRT For each PerExp, Percentage of Packets
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.01 0.1% 0.4% 1% 1.5% 1.7% 3.3% 3.5% 4.1% 4.2% 5%
0.025 0.2% 0.7% 1.2% 2.6% 2.9% 3.5% 3.8% 4% 4.2% 6%
0.05 0.6% 0.6% 1% 1.8% 2.1% 2.2% 2.7% 2.7% 3.3% 3.5%
0.075 0.6% 0.6% 2% 3% 3.2% 3.8% 4.5% 4.5% 4.4% 5%
0.1 0.2% 0.9% 1.3% 3.7% 4.3% 4.3% 4.6% 4.6% 5.5% 6.2%
1 0.7% 0.6% 1% 1.7% 1.9% 3.4% 3.3% 3.3% 4.9% 6.1%

Table 11: Percentage of Packets Investigated by Fine-Grained Detectors

